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Abstract The possibility of using global mean near-
surface temperature, its rate of change or the global
mean ocean heat-flux as predictors to statistically esti-
mate the change of global mean sea-level is explored
in the context of a long climate simulation of the past
millennium with the climate model ECHO-G. Such
relationships have recently been proposed to by-pass
the difficulty of estimating future sea-level changes
based on simulations with coarse-resolution climate
models. It is found that, in this simulation, a simple
linear relationship between mean temperature and the
rate of change of sea level does not exist. A regres-
sion parameter linking both variables, and estimated
in sliding 120-year windows, varies widely along the
simulation and, in some periods, even attains negative
values. The ocean heat-flux and the rate-of-change of
mean temperature seem to better capture the rate-of-
change of sea level due to thermal expansion.
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1 Introduction

The physical mechanisms that cause global sea-level
variations at decadal timescales mainly comprise the
changes in water density due to changes in water
temperature and salinity, and the increase of ocean
water mass due to melting of land glaciers and po-
lar ice caps. Estimations of future global sea-level
rise brought about by increasing concentrations of at-
mospheric greenhouse gases of anthropogenic origin
are based on simulations with coarse-resolution global
climate models, which include a representation of the
most important components of the climate system,
the atmosphere, the ocean and the cryosphere. The
coarse horizontal resolution of current climate models,
roughly 200 x 200 km, imposes some limitations on the
skill of future projections of global sea-level rise. Some
of the processes that modulate the heat flux into the
ocean, such as convection, may not be adequately rep-
resented in ocean models. Also, land-locked glaciers,
with extensions of a few kilometres, often located in
areas of complex topography, are only very crudely
represented in the soil sub-models, which operate at
a resolution that usually matches the resolution of
the atmospheric models. A further complication stems
from the ice dynamics in the polar ice sheets and its
response to an increased heat flux in the future. This
dynamics, far from being a simple heat-uptake from
the atmosphere, may be modulated by the presence
of ice cracks, melt water flow within the ice and ice
sliding over the bedrock that supports the ice caps. Due
to these reasons, the Fourth Assessment report of the
Intergovernmental Panel on Climate Change (Meehl
et al. 2007) included estimations of future projections of
sea-level rise with wide uncertainty ranges, and it was
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very cautious about the question of the magnitude of
the sea-level rise component due to the melting of the
polar ice caps.

However, decision makers require information
about the possible range of sea-level rise that include
all possible components for long-term planning with
a time horizon of 100 years or longer. To fulfil this
need and partially by-pass the uncertainties associated
to the representation of the above processes in climate
models, ad hoc (sometimes labelled “semi-empirical”)
methods have been proposed to estimate future global
mean sea level rise based on the global mean temper-
ature change simulated by climate models. Recently,
Rahmstorf (2007a), hereafter R07, proposed a linear
relationship between the rate of global mean sea-
level rise ‘{1—7 and the global mean near-surface air-
temperature deviations (see also Katsman et al. 2008).
This relationship is calibrated with observed data, thus
incorporating in a somewhat realistic and condensed
manner all known and unknown mechanisms modu-
lating the global sea-level height. As it is generally
assumed that climate models are much more skilful in
simulating future changes of the global mean tempera-
ture, such an ad hoc relationship would perhaps allow
for more reliable estimations of future sea-level rise and
of their uncertainties.

As with any empirical-statistical relationship, it is
assumed that the same physical mechanisms operating
in the present climate will operate in the future, even
when the predictors and the predictand will attain val-
ues outside the range observed in the calibration range.
It is, of course, not possible to test the validity of this
assumption in the future. One strategy is to test the
statistical methods in the virtual reality produced in
simulations with state-of-the-art climate models. This
line of research has also been exploited before to test
the skill of statistical methods of proxy-based recon-
structions of past climates (see, e.g. Lee et al. 2008).
Following this strategy, we test in this paper several
hypotheses concerning the relationship between global
mean sea level and other thermal surface variables in
a long climate simulation of the past millennium with
the climate model ECHO-G driven by estimations of
past greenhouse gas, volcanic and solar forcing. The
rationale of using this simulation as a zero-order test
bed is to ascertain whether the statical relationships are
stable in time in a climate that does not deviate very
strongly from the present one and does not show rapid
climate changes.
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2 Semi-empirical models linking global mean sea level
and global mean surface thermal variables

The method proposed in RO7 relates the rate of change
of sea-level height H with the global mean temperature
deviations from a reference level 7' — T0:

dH
o & a(T — T0) 1)

The coefficient a is estimated from the observational
record of the past 120 years (1880-2000) by ordinary
least squares. Once estimated, the statistical model
(Eq. 1) can be applied to projections of future global
temperature change simulated by a climate model and,
assuming that the linear relationship would still hold in
the future, an estimation of global mean sea-level rise
can be obtained.

The justification for the conceptual model (Eq. 1) is
based on the argument according to which sea level in
a stationary state, after forced by a sudden temperature
change, will adjust exponentially to a new stationary
state (see Fig. 1 in Rahmstorf 2007a). This adjustment
would follow a decay-type function g(t —#) with a
typical timescale of the order of several hundred years,
reflecting the time required by a heat pulse to reach the
deeper ocean layers and the time needed by land-ice
to melt. The initial rate of the sea-level adjustment ‘;—f
would be proportional to the magnitude of the sudden
temperature change, from which the linear relationship
between T and rate of sea-level rise follows.

The ad-hoc approach of R07 has been subject to
some criticism on statistical grounds/space/(Schmith
et al. 2007). One important caveat is the non-stationary,
or near non-stationary, character of the timeseries of
global mean near-surface temperature and global mean
sea-level. The relatively short record length and the
presence of stochastic trends, that impinge a long-
memory timescale on the time series, may jeopardise
the estimation of regression parameters a based on
ordinary least-squares methods. When the input data
used to estimate a linear relationship exhibit temporal
correlation [as described by auto-regressive processes
with a high degree of autocorrelation or even by non-
stationary (so called integrated) processes], other meth-
ods, such as co-integration analysis, have to be applied
to ascertain whether a linear relationship exists and, in
that case, to estimate the regression parameter (see,
e.g. Kaufmann and Stern 2002 for the application of
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co-integration analysis in a climate research context).
Schmith et al.’s (2007) analysis demonstrates that this
happens in the case of sea level change data. In the
case of non-stationary timeseries, the conventional es-
timation of the parameter a leads to misleading results.
This problem is compounded by the use of heavily
smoothed data that, in a short observational record,
include only a small number of degrees of freedom
(Rahmstorf 2007b).

From the physical point of view, the statistical model
(Eq. 1) may not appear completely straightforward.
Global mean temperature does not change stepwise
from one stationary state to another but follows a
continuous and smooth evolution 7'(¢). Still in the
framework of RO7, rather than being caused by the
instantaneous deviations of the global mean tempera-
ture, global sea-level at a certain time ¢ will be more
accurately described by the mathematical convolution
of the two functions: the temperature at all times previ-
ous to time ¢, T(t — At) and the corresponding adjust-
ment function g(Af). Also, ignoring for the moment
the non-linear dependence of the thermal expansion of
sea water with water temperature, the contribution of
the thermal expansion to the rate of sea-level change
% would not be directly linearly related to the water
temperature — and, therefore, not to the near-surface
air-temperature either — but to the global mean heat-
flux into the ocean F:

T F 2)

The proportionality constant has been denoted as
the “expansion efficiency of heat” by Russell et al.
(2000). Equation 2 should hold exactly, without any
time lag, if the thermal expansion of seawater were
independent of temperature. In general, it will depend
on water temperature, and a lag will exist between the
rate of change of sea level and temperature that will
depend on the three-dimensional water temperature
field and the rate of heat diffusion.

For model Eq. 1 to hold, at least approximately, a
linear relationship between the heat flux F and the
near-surface air-temperature should exist, which does
not seem directly obvious in view of the complexity
of the processes that modulate the heat uptake by the
ocean. However, previous analyses of future simula-
tions with a suite of global climate models indicate that
the heat-flux into the ocean is correlated with the global
mean near-surface temperature (Gregory et al. 2001;

Katsman et al. 2008), at least in situations where the
external forcing is steadily increasing. This indirectly
supports the statistical model Eq. 1. However, the phys-
ical mechanisms that may give rise to this linear link
remained to be explained in those analyses. Another
possibility is that, in simulations with steadily increasing
external forcing, both global mean temperature and
global heat-flux appear correlated because of the long-
term trends present in both variables. A separate analy-
sis of the proportionality between 7 and F in some
sub-periods in those simulations, e.g. in the twentieth
and the twenty first centuries, would help to clarify this
question.

Other plausible models for the thermal expansion
component of sea level would be simply to assume
a proportionality between deviations of the global
mean sea-level and deviations of the global mean near-
surface temperature. This would stem from Eq. 2 by
assuming that the latter is a proxy for the 3-dimensional
average of ocean temperature:

H,xT (3)

From this statistical model, a relationship between
the rates of change of global mean sea-level and of
near-surface temperature can be also proposed:

dH, dT
al 4
a @)

It is not easy to test which one of these statistical
models may be more valid in the real world. Timeseries
of estimations of global sea level based on satellite
measurements start only in 1993 (Cazenave and Nerem
2004) and the estimations of global mean sea level
based on tide gauges are burdened by the relatively
sparse sampling in the first half of the twentieth century.
The long memory properties of sea level variations also
limit a proper inference when dealing with such data
(Schmith et al. 2007).

An alternative strategy is to test these statistical
models (Egs. 1-4) in the virtual reality produced
by simulations with global climate models. In these
virtual, physically consistent realities, all data are
known perfectly and the complete chain of reasoning
leading to a semi-empirical estimation of sea-level rise
—i.e. calibration of the statistical model in an pseudo-
observational period, application to future climate-
change scenario projections and comparison with the
simulated sea level-can be emulated and the skill of the
statistical model evaluated. This test is, of course, too
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optimistic since, in the real world, the temperature and
sea-level data are affected by sampling and measuring
uncertainties, which are absent in the model data; also,
in the real world, more significant processes influence
sea level and its spatial distribution.

Rahmstorf (2007a) tested the statistical model Eq. 1
with data from climate simulations with the model of
intermediate complexity CLIMBER (Montoya et al.
2005) in the period 1880-2100 under the SRES emis-
sion scenario A1F1 (Meehl et al. 2007). The model
CLIMBER does not represent the contribution of land-
ice melting, so that only the statistical relationships
between the thermal expansion component and the
global mean temperature could be tested. The statis-
tical model Eq. 1 delivered reasonable estimations of
global mean sea level until about 2070, producing an
overestimation of the global sea level from there on-
wards. In year 2100, the estimated global sea level rise
was about 30% higher that the sea-level rise actually
simulated by CLIMBER.

3 Climate model and simulation

This study analyses a simulation with the coupled
atmosphere—ocean General Circulation Model ECHO-
G, consisting of the atmospheric model ECHAM4
(horizontal resolution approx. 3.75° x 3.75°) and the
oceanic component HOPE-G (Legutke and Voss
1999). The ocean model has a horizontal resolution of
2.8° x 2.8° with an increasingly finer resolution in the
tropical regions towards the equator, where it reaches
a 0.5° x 0.5° meridional separation. The ocean model
has 19 levels in the vertical. A version of the ECHO-
G model, slightly modified to include the effect of an-
thropogenic aerosols in the twentieth century, has been
included in the simulations for the Fourth Assessment
Report of the IPCC (Meehl et al. 2007). The simulation
analysed here covers the period 1000-1990 and was
driven by the estimations of past external forcing until
1990 (solar variations, greenhouse trace-gas concentra-
tions and volcanic activity). No anthropogenic aerosols
or ozone changes were considered (Gonzalez-Rouco
et al. 2006). The external forcings were derived from
the values provided by Crowley (2000). The variations
in solar irradiance, implemented in the simulation as a
single annual value independent of spectral band, were
estimated from concentrations of '°Be in ice cores and
re-scaled to units of watts per square meter, so that
the difference in solar irradiance between the mean of
1960-1990 and that of 1680-1710 (the Late Maunder
Minimum) was 0.3%. The volcanic forcing was also
taken from the estimations provided by Crowley (2000)
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and translated to effective changes in the solar constant
independent of latitude and with the same seasonal pro-
file for all eruptions (peaking in northern summer). The
concentrations of CO, and CHy, to drive the model,
were taken from ice-core-based estimations (Etheridge
et al. 1996, 1998). The simulation used here is a second
realisation of a simulation discussed in previous papers
(e.g. von Storch et al. 2006). This former simulation
may present some initial drift in the first 2-3 centuries
due to initial conditions extracted from a present-day
control run that could have been possibly too warm
and not in equilibrium with the external forcing in year
1000 (Osborn et al. 2006). The present simulation was
started from the initial conditions extracted from year
1700 AD. in the previous simulation (von Storch et al.
2006, 2008).

4 Model sea-level data

As for the CLIMBER model, the model ECHO-G
does not represent changes in the volume of land-ice
or polar ice caps. Therefore, long-term changes in this
model’s global mean sea-level are exclusively due to
changes in the density of the water column, ignoring
possible storage of water in the atmosphere or over
land. The density of the water column was computed
from the simulated in-situ modelled temperature and
salinity according to the standard UNESCO formula
for sea water (Fofonoff and Millard 1883). The result-
ing 2-dimensional sea-level field was globally averaged,
taking into account the diminishing size with latitude of
the model grid cells.

The statistical model used by (Rahmstorf 2007a)
(model Eq. 1) uses estimated “non-linear trends” of the
global mean sea level and global mean temperature.
These trends were calculated in R0O7, based on the
analysis by Jevrejeva et al. (2006), by the application
of singular spectrum analysis (Allen and Smith 1996),
a statistical technique related to principal components
analysis, with an embedding dimension of 15 years.
Basically, the output of singular spectrum analysis is a
smoothed version of the original timeseries, whereby
the filter characteristics are derived from the input
data. The same method, with the same embedding
dimension, was applied here to the ECHO-G data.
The term non-linear trends might be confusing in some
other context, perhaps interpreted as the estimation of
a deterministic trend present in the data. This is not the
case here, and in the following, we will also use the term
“low-frequency variability” to underline the meaning
of trend in this context. Although probably a simpler
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method to estimate the low-frequency behaviour of
these timeseries would have yielded similar results,
the method based on SSA has been applied here to
facilitate the comparison with previous results, as it was
the choice of 15-year-timescale degree of filtering.

This latter choice could be a compromise between
the need to filter out the high-frequency variations of
the temperature record, which are not followed by the
more sluggish ocean response. The statistical analysis
of the interannual co-variability would yield only very
weak statistical links. On the other hand, a strong fil-
tering considerably reduces the number of degrees of
freedom in the data, thus making the estimations of the
statistical parameters more uncertain. Again, the aim of
the present analysis is not to find the optimal degree of
filtering, although it is acknowledged that this question
may be related to the choice of optimal predictor.

5 Results

The low-pass filtered time series of the model
global mean thermosteric sea level and global mean

temperature are displayed in Fig. 1a. In the following,
model sea level will refer only to the thermosteric
component, as explained in the previous section.

Both series show maximum values at the beginning
and at the end of the simulation, which straddle three
centuries — roughly between 1500 and 1800 — when
both global means of temperature and sea level were
lower than the long-term average. The simulation of the
global mean temperature agrees well with other simula-
tions of the same period with the climate system model
CSM (Zorita et al. 2007). Unfortunately, sea-level data
from these simulations have not been analysed and
published yet. However, the simulated evolution of
global ocean heat content is quite similar to the one
obtained by Crowley et al. (2003) in a simulation with
an energy-balance model (Fig. 2). The global mean
sea level simulated by ECHO-G shows an increase in
the last 200 years of the simulation of about 70 mm
and a linear trend in the period 1955-1995 of 0.42 +
0.06 mm/year, which agrees quite well with estimation
of the observed thermosteric contribution to global
sea-level rise in the same period (0.40 & 0.09 mm/year,
Antonov et al. 2005).

Fig. 1 Time series derived mm/year
from the simulation with the 100 -1 b
model ECHO-G in the past H a) T aH/d )
millennium related to global | 0.9 /dt
mean near-surface T 0.7 B T
temperature 7" and global ]
mean thermosteric §ea-level 0.5 - r=0.56
H,, total heat-flux into the ]
ocean F and the time E 0.3
derivatives of Ty, and H ]
(a—d). The predictands H and " / 0.1
‘2—7 are shown with their 1
physical units as simulated by -0.1+
the model ECHO-G; the ] 0.3 7]
other predictor variables are ]
resc_:aled to have the same _ -50 ——TTTT 0.5 ——
variance as the corresponding
predictand 1.1 )
7 C
0.9 dH/dt
0.7 dT/dt
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S . ;
> 0.3 >
< ~
£ T =
= 0.1 I)f(\ A M {\m (\ A\ -
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“0.1- N \] v W
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Fig. 2 Simulated evolution of the ocean heat content in the
ECHO-G simulation in the past millennium between ocean sur-
face and 3,000-m depth. This figure should be compared with that
simulated with an energy balance model (Crowley et al. 2003;
their Fig. 3). The sharp drops in heat content around 1260 and
1820 are caused by the large volcanic eruptions

Figure 1 additionally shows paired time series from
the ECHO-G simulation that form the basis of the lin-
ear statistical models presented in the previous section.
The skill of each model along the whole simulation is
assessed by the correlation between the respective pre-
dictor and predictand timeseries, indicated also within
each of the panels in Fig. 1.

As expected from physical reasoning, the best match
is found between the vertical heat-flux and the rate
of sea-level change (r = 0.94; model 2). Assuming for
the moment that the equation of state of seawater
is linear on temperature and independent of pressure
and salinity, and that heat capacity is independent of
temperature and salinity as well, so that the thermal
expansion coefficient would be just constant for all
water masses, sea-water-specific volume would be pro-
portional to temperature and, therefore, the rate of sea-
level change would also be strictly proportional to the
total heat flux. This ideal behaviour would bring about a
simultaneous correlation of unity between sea-level rise
and total heat flux. Because, in reality, deviations from
this ideal behaviour occur, and the thermal expansion
of water brought about by the heat-flux depends also
on temperature and salinity, the correlation between
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the rate of sea-level change and heat-flux is not perfect.
Also, the slow penetration of the heat-flux into the
ocean induces a time lag between both variables since
the thermal expansion undergone by an ocean layer
depends on its temperature, pressure and salinity and,
therefore, on the depth of the layer.

Next in terms of skill is the statistical relationship be-
tween the rate of change of temperature and the rate of
change of sea level (r = 0.67). This illustrates probably
that the ocean-heat flux is more closely connected to
the rate of change of near-surface air temperature than
to the temperature deviations themselves. This can be
also expected from physical reasoning.

The third statistical model in terms of skill is Eq. 1,
which employs global mean air temperature as pre-
dictor and the rate of sea-level change as predictand
(r = 0.56). Both time series agree on multi-centennial
timescales, but they show discrepancies at centennial
and multidecadal timescales. This can be problematic
because, in practice, the statistical model Eq. 1 is cal-
ibrated with observational data in the observational
period at these timescales. Thus, the apparent agree-
ment in a short calibration period may not be stable in
time. This will be investigated further in the following
sections.

Lastly, the worst statistical model is Eq. 3, based on
global mean temperature as predictor and global mean
sea-level as predictand (r = 0.52). It is noteworthy that,
as all series are highly autocorrelated, a test for signifi-
cance for these correlations is not straightforward.

The 1-year-lag autocorrelation for all these series is
close to 0.99. Taking as null-hypothesis that the time
series are the result of an autoregressive process of
order 1 with a 1-lag autocorrelation of 0.99, the 95%
significance level estimated by Monte Carlo realisations
is 0.46. Sub-sampling the time series, for instance, 1 year
per decade, does not reduce the degree of autocorre-
lation, which stays in the range 0.76 to 0.99. A one-in-
30 sub-sampling reduces the autocorrelation of the time
derivative of T to almost zero, whereas the autocorre-
lation of the other time series remains higher than 0.6.

The practical applications of the statistical models
that use T or ‘% as predictors will be now analysed
in more detail. The rationale behind this is that both
predictors could be potentially better estimated in the
real world from observations than the heat flux F.
The process of estimating the regression parameter
will be emulated in the virtual reality of the ECHO-
G simulation, recalling that, in the climate model, only
the thermosteric contribution is represented. As the
simulation ends in year 1990, the pseudo-observational
period for calibration is 1880-1990, instead of 1880-
2000 as in the real observations.
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Fig. 3 a Lag-correlation function between global mean near-
surface air temperature and rate-of-change of global mean sea
level in the millennium simulation with the model ECHO-G
(model Eq. 1). b regression coefficient between global mean near-
surface air temperature and global mean sea-level rate of change
(thermosteric component) in gliding windows of 120 years in the
ECHO-G simulation of the past millennium. ¢ histogram of the
values depicted in b

In the period 1880-1990, the least-mean-square er-
ror estimation of a yields a value of 0.57 mm/year
per Kelvin, which amounts to about one third of the
value estimated by Rahmstorf (2007a) in the simulation
with the CLIMBER model, also considering only the
thermosteric contribution. The correlation between T
and ‘Z—’f is, in this period, 0.68. The estimation of the
uncertainty bounds for this central value of a is not
straightforward, as both timeseries, predictor and pre-
dictand are strongly autocorrelated (lag-1 autocorrela-
tion of 0.99 for both). The residuals of the regression
also display a high degree of positive autocorrelation
with a very low Durbin—Watson statistic of 0.002. This
indicates that the conditions to apply a standard least-
square-error estimator of the regression coefficients are
not fulfilled. These statistical caveats may explain the

large differences between the estimation of a in ECHO-
G and in CLIMBER, although model differences may
also play a role. Holgate also found large differences in
estimations of @ in the observational record when using
either the first or the second half of the record (Holgate
2007). These are all indications that the relationship
between T and “;i—lj may be more complex than linear.

As mentioned in Section 1, it seems plausible that
a potential relationship between global mean temper-
ature and the rate of change of global mean sea-level
could be lagged in time. This aspect can be also easily
tested in the ECHO-G simulation by inspecting the
lag-correlation function between these two variables
(Fig. 3a). The correlation attains its maximum value
when the global mean temperature is leading by about
25 years, which seems reasonable from a physical point
of view. The observational timeseries would be too
short to test whether this lag is realistic, although some
hints of this can be discerned (see Fig. 3 in Rahmstorf
2007b), but it would be an interesting parameter to
compare in other long climate simulations, once they
become available.

The question arises as to whether the estimation
of the regression parameter in model Eq. 1 is stable
in time. The value of the regression parameter a has
been estimated in running segments of 120-year lengths
along the simulations. The resulting timeseries together
with its histogram are displayed in Fig. 3b and c. The
possible values for the regression parameter cover a
wide range, and they even show non-negligible periods
with inverse relationships.

A similar analysis has been performed for the model
using the rate of change of global temperature (model
4). There exists a consistent lag-relationship between
the rate of temperature change leading the sea-level
rate of change in the model by about 8 years. This lag
changes little (by about 1 year) when estimated in both
halves of the simulation, and therefore, it seems to be
quite stable. The lag correlation function (Fig. 4) ap-
pears narrower than the corresponding lag correlation
function between dH/dt and T, and could be visually
deduced from Fig. 1. The same time lag exists between
the dT/dt and the heat flux F, as the relationship
between F and the sea-level rate of change is, in the
model, basically simultaneous. This means that the rate
of change of temperature leads the heat flux into the
ocean also by about 8 years.

The regression parameter attains in the last 120 years
of the simulation a value of 35 mm/K (e.g. mm/year
per Kelvin/year), but it also varies when estimated in
sliding 120-year windows along the simulation (Fig. 4b).
However, although the range of variations is large,
the regression parameter displays, most of the time,
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Fig. 4 a Lag-correlation function between the rate of change of
the global mean near-surface air temperature and rate-of-change
of global mean sea level in the millennium simulation with the
model ECHO-G (model Eq. 4). b Regression coefficient between
global mean near-surface air temperature and global mean sea-
level rate of change (thermosteric component) in gliding windows
of 120 years in the ECHO-G simulation of the past millennium.
¢ Histogram of the values depicted in b

positive values. The histogram derived from the time-
series displayed in Fig. 4b is shown in Fig. 4c. This
histogram indicates that, also for this pair of variables,
the uncertainty bounds for the regression estimated in a
120-year period are substantial, even if at least the slope
of their linear relationship is clearly positive.

In real applications, both predictors will have to be
applied by fitting their respective linear models in a
relatively short period of time — roughly 120 years —
and the resulting models will be used to predict the
future behaviour of the rate of sea-level change in
the following decades. This predictive skill can be also
emulated in the context of the climate simulation. For
this purpose, we consider a sliding window of 120-year

@ Springer

the climate model; b as in a but choosing the optimal lag for each
predictor in the regression model

length where the linear models are calibrated, taking
either T or ”fi—{ as predictors and ‘Z—Ij as predictand. The
predictand is estimated in the 50 years following the
end of the sliding time window. The estimations can
then be compared to the target variable simulated by
the climate model, and a root-mean-squared (RMS) er-
ror for the length of the time window can be computed.

The results are displayed in Fig. 5a. For the sake of
comparison, the RMS error obtained when using, in a
similar manner, the heat-flux F as predictor are also in-
cluded. As expected, the heat-flux provides estimations
with the lowest errors, with a time-mean value along the
simulation of 0.12 mm/year. The rate of change of tem-
perature % yields a time-mean error of 0.16 mm/year,
whereas the time-mean RMS incurred when using %
as predictor is 0.17 mm/year. The standard deviation of
%1_1:1 is 0.19 mm/year. The heat-flux is the best predictor
almost always along the simulation, whereas 7" and %
alternate as the worst predictor among these three. In
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general, % performs slightly better than 7, the differ-

ences not being very large.

The comparison of the RMS errors for the three
predictors is, however, not completely fair, as the time
lag between each predictor and these predictands is
different. For instance, a regression model taking into
account the 25-year lag to the sea-level rate of change
may provide better results than the regression model
assuming no lag between predictor and predictand.
Similar to the results shown in Fig. 5a, Fig. Sb shows the
mean-root-square errors along the simulation obtained
when the regression models are set using the optimal
lag relationship between predictor and predictand.

The differences between the unlagged and lagged
regression are small for the rate of change of tempera-
ture (model Eq. 4) (now 0.17 mm/year), as the optimal
lag was just 8 years. For the global mean temperature
(model Eq. 1), the use of the optimal lag markedly
reduces the prediction RMS to 0.13 K/mm. In the last
sliding window at the end of the simulation, when the
sea level is increasing at a rate of about 0.6 mm/year,
the smallest error obtained among the three predictors
is about 0.2 mm/year. It should be noted that, for the es-
timation of the lagged regression coefficient, the sliding
window for the predictor was also shifted back in time
with respect to the sliding window of the predictand, so
that, also in this case, 120 years of data was available
for the estimation—except for the beginning of the
simulation. This would not be possible in the real world
for two reasons: firstly, it would be much more difficult
to identify the optimal lag in the short observational
record, and secondly, the shorter overlapping period
between the predictand and the lagged predictor will
reduce the data available to calibrate the regression
model even more.

6 Conclusions

Several simple linear models linking global mean sea
level, global mean temperature, their rate of change
and the heat-flux into the ocean have been tested in
a long simulation of the past millennium with the cli-
mate model ECHO-G. These relationships could be
potentially used to estimate empirically the future sea-
level change based on the temperature changes simu-
lated by climate models driven by different scenarios
of emissions of greenhouse gases. This type of test
performed in the virtual reality produced by climate
models cannot prove whether a certain hypothesis, in
this case the different statistical relationships, will hold

in the real world as well. However, they can be used to
falsify a particular hypothesis: if it is not fulfilled in a
simple virtual reality, it will probably also fail in a more
complex real world.

The sea level simulated by the model ECHO-G, for
instance, only contains the contribution of the thermal
expansion of the water column and disregards other
contributions that are present in the real world as
the melting of land ice. However, it seems plausible
to assume that the existence of several and unrelated
physical processes that link temperature and sea-level
would hinder their description by a simple statistical lin-
ear model. In this sense, the conditions provided by the
climate model to test a particular statistical relationship
will be too optimistic.

Even in these conditions, it has been found that
the best statistical model of the four explored here
is the one that uses the ocean heat-flux as predictor.
Unfortunately, the ocean heat-flux is a variable that is
difficult to estimate in the real world, and of which long
time series simply do not exist. Therefore, this close
relationship is not useful to estimate empirically future
sea-level changes.

The linear link between global mean temperature
and the rate of change of global mean sea level (model
Eqg. 1) has turned out to be not reliable over the full
time period in the context of this climate simulation;
instead, for some periods, even inverse relationships
were found to describe the simulated data best. The
second predictor “rate of change of temperature”, used
in model Eq. 4, analysed here in more detail, did
not show markedly better results. For both predictors,
there exist periods in the simulation where the predic-
tion errors are very large. A statistical analysis using
the rather short, and heavily smoothed, observational
record, which suffers from the strong temporal corre-
lation and strong linear trends, it seems compulsory to
submit statistical model to a careful test with simulated
data, ideally stemming from long climate simulations
performed with several different models.

Acknowledgement F. G-R was partially funded by the Spanish
Ministerio de Educaciéon y Ciencia through grant REN-2002-
04584-CLI.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

@ Springer



236

Ocean Dynamics (2008) 58:227-236

References

Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregu-
lar oscillations in the presence of coloured noise. J Climate
9:3373-3404

Antonov JI, Levitus S, Boyer TP (2005) Thermosteric sea-
level rise. Geophys Res Lett 32:1.21602. doi:10.1029/
2005GL023112

Cazenave A, Nerem RS (2004) Present-day sea-level change:
observations and causes. Rev Geophys 42. doi:10.1029/
2003RG00139

Crowley TJ (2000) Causes of climate change over the past
1000 years. Science 289:270-277

Crowley TJ, Baum SK, Kim K-Y, Hegerl GC (2003) Modeling
ocean heat content changes during the last millennium. Geo-
phys Res Lett 30. doi:10.1029/2003GL017801

Etheridge DM, Steele LP, Langenfelds RL, Francey RJ,
Barnola J-M, Morgan VI (1996) Natural and anthropogenic
changes in atmospheric CO; over the last 1000 years from
air in Antarctic ice and firn. J Geophys Res 101(D2):
4115-4128

Etheridge DM, Steele LP, Francey RJ, Langenfelds RL (1998)
Atmospheric methane between 1000 A.D. and present: ev-
idence of anthropogenic emissions and climatic variability.
J Geophys Res 103(D13):15979-15994

Fofonoff NP, Millard RC Jr (1883) Algorithms for computation
of fundamental properties of seawater. UNESCO technical
papers in marine science no. 44. UNESCO, Paris, p 53

Gonzalez-Rouco JF, Beltrami H, Zorita E, von Storch H (2006)
Simulation and inversion of borehole temperature pro-
files in surrogate climates: spatial distributions and sur-
face coupling. Geophys Res Lett 33:1.01703. doi:10.1029/
2005GL024693

Gregory JM, Church JA, Boer GJ, Dixon KW, Flato GM,
Jackett DR, Lowe JA, O’Farrell SP, Roeckner E, Russell
GL, Stouffer RJ, Winton M (2001) Comparison of results
from several AOGCMs for global and regional sea-level
change 1900-2100. Clim Dyn 18:225-240

Holgate S (2007) Comment on ’a semi-empirical approach
to projecting future sea-level rise’. Science. doi:10.1126/
science1143286

Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear
trends and multiyear cycles in sea level records. J Geophys
Res 111:C09012. doi:10.1029/2005JC003229

Kaufmann RK, Stern DI (2002) Cointegration analysis of
hemispheric temperature relations. J Geophys Res 107.
doi:10.1029/2000JD000174

Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ,
Burgers G (2008) Climate scenarios of sea level rise for the

@ Springer

northeast Atlantic Ocean: a study including the effects of
ocean dynamics and gravity changes induced by ice melt.
Clim Change. doi:10.1007/510584-008-9442-9

Legutke S, Voss R (1999) The Hamburg atmosphere-ocean cou-
pled circulation model ECHO-G. Deutches Klimarechen-
zentrum Technical Report 18. DKRZ, Hamburg

Lee TCK, Zwiers FW, Tsao M (2008) Evaluation of proxy-based
millennial reconstruction methods. Clim Dyn 31:263-281.
doi:10.1007/s00382-0007-0351-9

Meehl GA, Stocker T, Collins W, Friedlingstein P, Gaye A,
Gregory JM, Kitoh A, Knutti R, Murphy J, Noda A,
Raper S, Watterson IG, Weaver AJ, Zhao Z-C (2007)
Global climate projections. In: Solomon S, Qin D,
Manning M, Chen Z, Marquis M, Averyt KB, Tignor M,
Miller HL (eds) Climate change 2007: the physical science
basis. Contribution of working group I to the fourth as-
sessment report of the intergovernmental panel on climate
change. Cambridge University Press, Cambridge

Montoya M, Griesel A, Levermann A, Mignot J, Hofmann M,
Ganopolsky A, Rahmstorf S (2005) The earth system model
of intermediate complexity CLIMBER-3«. Part I: descrip-
tion and performance for present-day conditions. Clim Dyn
25:237-263

Osborn TJ, Raper SCB, Briffa KR (2006) Simulated climate
change during the last 1,000 years: comparing the ECHO-G
general circulation model with the MAGICC simple climate
model. Clim Dyn 27:185-197

Russell GL, Miller JR, Rind D, Ruedy RA, Schmidt GA, Sheth S
(2000) Comparison of model and observed regional tem-
perature changes during the past 40 years. J Geophys Res
105:14891-14898

Schmith T, Johansen S, Thejll P (2007) Comment on ‘a semi-
empirical approach to projecting future sea-level rise’.
Science. doi:10.1126/science1143286

Rahmstorf S (2007a) A semi-empirical approach to projecting
future sea-level rise. Science 315:368-370

Rahmstorf S (2007b) Response to comment on ‘a semi-
empirical approach to projecting future sea-level rise’.
Science. doi:10.1126/science1143286

von Storch H, Zorita E, Jones J, Dimitriev Y, Gonzalez-Rouco F,
Tett SFB (2006) Reconstructing past climates with noisy
data. Science 306:679-682

von Storch H, Zorita E, Gonzdlez-Rouco JF (2008) Assessment
of three temperature reconstruction methods in the virtual
reality of a climate simulation. Int J Earth Sci (Geol Rund-
sch). doi:10.1007/s00531-008-0349-5

Zorita E, Gonzélez-Rouco F, von Storch H (2007) Comments on
‘testing the fidelity of methods used in proxy-based recon-
structions of past climate’. J Climate 20:3693-3698


http://dx.doi.org/10.1029/2005GL023112
http://dx.doi.org/10.1029/2005GL023112
http://dx.doi.org/10.1029/2003RG00139
http://dx.doi.org/10.1029/2003RG00139
http://dx.doi.org/10.1029/2003GL017801
http://dx.doi.org/10.1029/2005GL024693
http://dx.doi.org/10.1029/2005GL024693
http://dx.doi.org/10.1126/science1143286
http://dx.doi.org/10.1126/science1143286
http://dx.doi.org/10.1029/2005JC003229
http://dx.doi.org/10.1029/2000JD000174
http://dx.doi.org/10.1007/s10584-008-9442-9
http://dx.doi.org/10.1007/s00382-0007-0351-9
http://dx.doi.org/10.1126/science1143286
http:/dx.doi.org/10.1126/science1143286
http://dx.doi.org/10.1007/s00531-008-0349-5

	Relationship between global mean sea-level and global mean temperature in a climate simulation of the past millennium
	Abstract
	Introduction
	Semi-empirical models linking global mean sea level and global mean surface thermal variables
	Climate model and simulation
	Model sea-level data
	Results
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


